0

EbbaBiolight - References

2024

  • Grando, K., Bessho, S., Harrell, K., Kyrylchuk, K., Pantoja, A. M., Olubajo, S., Albicoro, F. J., Klein-Szanto, A., & Tükel, Ç. (2024). Bacterial amyloid curli activates the host unfolded protein response via IRE1α in the presence of HLA-B27. Gut Microbes, 16(1), 2392877. https://doi.org/10.1080/19490976.2024.2392877
  • Rojas, D., Marcoleta, A. E., Gálvez-Silva, M., Varas, M. A., Díaz, M., Hernández, M., Vargas, C., Nourdin-Galindo, G., Koch, E., Saldivia, P., Vielma, J., Gan, Y.-H., Chen, Y., Guiliani, N., & Chávez, F. P. (2024). Inorganic Polyphosphate Affects Biofilm Assembly, Capsule Formation, and Virulence of Hypervirulent ST23 Klebsiella pneumoniae. ACS Infectious Diseases, 10(2), 606–623. https://doi.org/10.1021/acsinfecdis.3c00509
  • Zhang, T., Ray, S., Melican, K., & Richter-Dahlfors, A. (2024). The maturation of native uropathogenic Escherichia coli biofilms seen through a non-interventional lens. Biofilm, 8, 100212. https://doi.org/https://doi.org/10.1016/j.bioflm.2024.100212
  • Ray, S., Löffler, S., & Richter-Dahlfors, A. (2024). High-Resolution Large-Area Image Analysis Deciphers the Distribution of Salmonella Cells and ECM Components in Biofilms Formed on Charged PEDOT:PSS Surfaces. Advanced Science. https://doi.org/10.1002/advs.202307322

2023

  • Antypas, H., Zhang, T., Choong, F. X., Melican, K., & Richter-Dahlfors, A. (2023). Dynamic single cell analysis in a proximal-tubule-on-chip reveals heterogeneous epithelial colonization strategies of uropathogenic Escherichia coli under shear stress. FEMS Microbes, 4, 1–12. https://doi.org/10.1093/femsmc/xtad007
  • Richter-Dahlfors, A., Kärkkäinen, E., & Choong, F. X. (2023). Fluorescent optotracers for bacterial and biofilm detection and diagnostics. Science and Technology of Advanced Materials, 24(1), 2246867. https://doi.org/10.1080/14686996.2023.2246867
  • Coppens, B., Belpaire, T. E. R., Rí Pe, J., Steenackers, H. P., Ramon, H., & Smeets, B. (2023). Anomalous diffusion of nanoparticles in the spatially heterogeneous biofilm environment. iScience, 26, 106861. https://doi.org/10.1016/j.isci.2023.106861
  • Lorenz, K., Preem, L., Sagor, K., Putrinš, M., Tenson, T., & Kogermann, K. (2023). Development of In Vitro and Ex Vivo Biofilm Models for the Assessment of Antibacterial Fibrous Electrospun Wound Dressings. Molecular Pharmaceutics, 20(2), 1230–1246. https://doi.org/10.1021/acs.molpharmaceut.2c00902

2022

  • Koch, M., Palarie, V., Koch, L., Burkovski, A., Zulla, M., Rosiwal, S., & Karl, M. (2022). Preclinical Testing of Boron-Doped Diamond Electrodes for Root Canal Disinfection—A Series of Preliminary Studies. Microorganisms, 10(4). https://doi.org/10.3390/microorganisms10040782
  • Kärkkäinen, E., Jakobsson, S. G., Edlund, U., Richter-Dahlfors, A., & Choong, F. X. (2022). Optotracing for live selective fluorescence-based detection of Candida albicans biofilms. Frontiers in Cellular and Infection Microbiology, 12(981454). https://doi.org/10.3389/fcimb.2022.981454
  • Sass, A., Vandenbussche, I., Bellich, B., Cescutti, P., & Coenye, T. (2022). Pellicle Biofilm Formation in Burkholderia cenocepacia J2315 is Epigenetically Regulated through WspH, a Hybrid Two-Component System Kinase-Response Regulator. Journal of Bacteriology, 204(5). https://doi.org/10.1128/jb.00017-22
  • Butina, K., Lantz, L., Choong, F. X., Tomac, A., Shirani, H., Löffler, S., Nilsson, K. P. R., & Richter-Dahlfors, A. (2022). Structural Properties Dictating Selective Optotracer Detection of Staphylococcus aureus. ChemBioChem, 23(11). https://doi.org/10.1002/cbic.202100684
  • Pham, L. H. P., Colon-Ascanio, M., Ou, J., Ly, K., Hu, P., Choy, J. S., & Luo, X. (2022). Probing mutual interactions between Pseudomonas aeruginosa and Candida albicans in a biofabricated membrane-based microfluidic platform. Lab on a Chip, 22, 4349–4358. https://doi.org/10.1039/d2lc00728b
  • Eckert, J. A., Rosenberg, M., Rhen, M., Choong, F. X., & Richter-Dahlfors, A. (2022). An optotracer-based antibiotic susceptibility test specifically targeting the biofilm lifestyle of Salmonella. Biofilm, 4. https://doi.org/10.1016/j.bioflm.2022.100083

2021

  • Rodríguez-Rojas, A., Baeder, D. Y., Johnston, P., Regoes, R. R., & Rolff, J. (2021). Bacteria primed by antimicrobial peptides develop tolerance and persist. PLoS Pathogens, 17(3), 1–30. https://doi.org/10.1371/JOURNAL.PPAT.1009443
  • Merkl, P., Aschtgen, M. S., Henriques-Normark, B., & Sotiriou, G. A. (2021). Biofilm interfacial acidity evaluation by pH-Responsive luminescent nanoparticle films. Biosensors and Bioelectronics, 171(October 2020), 112732. https://doi.org/10.1016/j.bios.2020.112732
  • Choong, F. X., Huzell, S., Rosenberg, M., Eckert, J. A., Nagaraj, M., Zhang, T., Melican, K., Otzen, D. E., & Richter-Dahlfors, A. (2021). A semi high-throughput method for real-time monitoring of curli producing Salmonella biofilms on air-solid interfaces. Biofilm, 3(September), 100060. https://doi.org/10.1016/j.bioflm.2021.100060